Early exposure to antibiotics can increase risk of asthma: study
Early exposure to antibiotics can trigger long-term susceptibility to asthma, according to new research from Monash University.
Researchers found a molecule produced by bacteria in a healthy gut that provides an explanation as to why the recurrent use of antibiotics increases the risk of asthma, said Professor Ben Marsland, who led the study.
“We know that recurrent use of antibiotics early in life disrupts a person’s healthy gut microbiota and increases the risk of allergies and asthma. We have discovered that a consequence of antibiotic treatment is the depletion of bacteria that produce IPA, thus reducing a key molecule that has the potential to prevent asthma,” he said.
Asthma affects over 260 million people globally and causes around 455,000 deaths annually. In Australia, 2.7 million people live with asthma and for 45% of these people, their asthma is poorly controlled.
In a paper published in the journal Immunity, Monash University researchers report on the how the IPA molecule is crucial to long-term protection against asthma.
The first years of life are important in developing a stable gut microbiota, according to Marsland. “It is shaped first by food intake — both milk and solid foods — as well as genetics, and environmental exposures. Infants at high risk of allergies and asthma have been shown to have a disrupted and delayed maturation of the gut microbiome,” he said.
“The use of antibiotics in the first year of life can have the unintentional effect of reducing bacteria which promote health, and we now know from this research that antibiotics lead to reduced IPA, which we have found is critical early in life as our lung cells mature, making it a candidate for early life prevention of allergic airway inflammation.”
Working in mice predisposed to develop asthma, the research team found that — when given antibiotics in early life — the mice were more susceptible to house dust mite-induced allergic airway inflammation and this lasted into adulthood. Asthma is commonly triggered by exposure to house dust mite.
This susceptibility was maintained long-term, even after the gut microbiome and IPA levels returned to normal, highlighting that this molecule’s function was particularly important early in life.
When these mice had their diet supplemented with the IPA molecule early in life, the researchers found that the mice were effectively cured of developing the house dust mite-induced allergic airway inflammation, or asthma, in adulthood.
In the future, the molecule could potentially be trialled as a simple treatment, in the form of a dietary supplement, for children at risk of asthma to prevent them developing the disease, according to the researchers.
New public health campaign to improve pregnancy outcomes
The Preterm Birth Prevention campaign 'See, Stop, Scan' aims to promote engagement...
Feedback sought on genomic-led cancer control
The framework is designed to guide health professionals, researchers, health services and policy...
Can you die from long COVID? The answer is not so simple
Nearly five years into the pandemic, COVID is feeling less central to our daily lives.