Pin-prick test could pick early signs of heart attack, stroke
Approximately 55,000 people suffer a heart attack in Australia each year, with a similar number suffering from stroke.
Many are caused by blood clots that block the flow of blood to the heart, often in at-risk individuals without any physical warning.
However, long before a heart attack or stroke occurs, tiny changes in the blood begin taking place. Often, blood flow is disturbed, leading to blood clotting and inflammation, which can block blood vessels.
University of Sydney biomedical engineer Dr Arnold Lining Ju is developing a biomedical micro-device to detect these subtle platelet changes before a heart attack or stroke takes place.
Using a pin-prick test, the micro-device would take a blood sample from a person’s finger. The sample would then be analysed for platelet clotting and white cell inflammation responses, information that would be immediately processed by an external operating system.
“How this device would work is that an at-risk person, for example, someone with heart disease, would use it daily,” said Ju, from the Sydney Nanoscience Hub and Faculty of Engineering.
“Using a finger prick test, the device would monitor their blood and alert them to any potentially dangerous changes. If a change was detected, they would need to present for more monitoring at a hospital,” said Ju, who is also a group affiliate of the Heart Research Institute's Thrombosis Group.
The University’s School of Biomedical Engineering’s new facilities will enable further engineering development for the microdevice, which is predicated on an integrated microfluidic chip.
Ju is working with a team of PhD students to build highly sensitive computational fluid dynamics simulations to better understand the impact of mechanical forces that could lead to blood pooling and clots.
Biomedical engineering student Yunduo Charles Zhao said: “In the near future, we plan to apply artificial intelligence to understand an individual’s blood work with the aim of creating a personalised blood profile of that person.”
Research assistant Laura Moldovan said that, historically, it has been difficult to predict when a heart attack or stroke might happen: “They appear to occur at random, sometimes without any physical symptoms; however, in fact there are tiny physical changes that occur in the blood — the key to this device is being able to sensitively monitor these microscopic changes.”
The research forms part of a long-term collaboration with the Director of Cardiovascular Research, CPC at the Heart Research Institute, Professor Shaun Jackson.
The team’s recent work, Microfluidic post method for 3-dimensional modeling of platelet-leukocyte interactions, was recently published in the Royal Society of Chemistry.
New public health campaign to improve pregnancy outcomes
The Preterm Birth Prevention campaign 'See, Stop, Scan' aims to promote engagement...
Feedback sought on genomic-led cancer control
The framework is designed to guide health professionals, researchers, health services and policy...
Can you die from long COVID? The answer is not so simple
Nearly five years into the pandemic, COVID is feeling less central to our daily lives.