Researchers Pave the Way for Personalised Treatments for Bacterial Diseases
Monday, 03 March, 2014
Researchers have developed a new method for rapidly measuring the level of antibiotic molecules in the blood and how they work against bacteria, paving the way for personalised treatments for bacterial diseases.
The researchers, including Professor Matt Cooper from The University of Queensland (pictured right), used nano-sized levers as sensors to measure the concentration of active antibiotics in blood.
“Some of our most effective antibiotics are like termites eating away at the walls of a wooden house – they attack bacterial cell walls so they eventually collapse,” said Professor Cooper, from UQ’s Institute for Molecular Bioscience.
“But competing molecules in the blood can bind to antibiotics and prevent them from working, meaning there are less molecules free to exert force on bacterial cell walls.
“The sensor we developed, one billionth of a metre in size, can detect the bending that occurs in a cell wall when it is assaulted by antibiotics.
“This enables us to measure how many antibiotic molecules are free in the blood to attack bacteria and treat the infection based upon how much force they exert onto the wall.”
The amount of free antibiotics in the blood will vary between people, meaning this method could be used to determine the best antibiotic dosages for different individuals and different infections.
“Understanding the way antibiotics use physical force against bacteria could also provide researchers with a new angle on the design of better drugs to fight superbugs, which often have thicker, stronger cell walls.,” Professor Cooper said.
The researchers tested the method on two antibiotics: vancomycin, used to treat multi-drug resistant infections such as MRSA, and oritavacin, a new antibiotic still in clinical trials designed to combat bacteria that are resistant to vancomycin.
Details of the method were published overnight in scientific journal Nature Nanotechnology in a study led by Dr Joseph Ndieyira from the London Centre for Nanotechnology (LCN) at University College London.
It also involved researchers from the University of Cambridge, UK, and Jomo Kenyatta University of Agriculture and Technology in Kenya.
Professor Cooper acknowledged support from an Australia Fellowship from the National Health and Medical Research Council
Losing our minds — an AU$85bn phenomenon
There is a storm brewing, largely unnoticed: the convergence of two high-prevalence, high-impact...
Upholding a new model of mental health care
The Ipswich Hospital Mental Health Acute Inpatient Service was recently recognised at the...
Enhancing hearing loss diagnostics and outcomes in primary care
Hearing health is integral to overall physical and emotional wellbeing, yet it often remains...